This course delves into advanced data structures in Python, focusing on the powerful capabilities of the NumPy and Pandas libraries. It introduces the ndarray, a multidimensional array object provided by NumPy, enabling efficient storage and manipulation of large datasets. Additionally, learners will explore the Series and DataFrame structures offered by Pandas, which facilitate data analysis and manipulation in a more user-friendly manner. Throughout the course, students will engage in practical exercises and case studies to reinforce their understanding of how these advanced data structures can be applied in real-world scenarios.



BiteSize Python: NumPy and Pandas
Dieser Kurs ist Teil von Spezialisierung BiteSize Python for Intermediate Learners

Dozent: Di Wu
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Understanding and utilizing the ndarray from the NumPy library.
Exploring the Series and DataFrame structures in the Pandas library.
Practical applications of advanced data structures in data analysis and manipulation.
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Februar 2025
5 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage


Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

In diesem Kurs gibt es 5 Module
This module introduces the ndarray, the core data structure of the NumPy library that allows for efficient manipulation of large, multi-dimensional arrays. It begins with an overview of what an ndarray is and compares its capabilities to Python's built-in list data structure. The module then covers how to create ndarray objects, access and manipulate both 1D and 2D arrays, and perform various operations on these arrays. By the end of this module, learners will gain a solid understanding of how to effectively use ndarray for numerical and data analysis tasks.
Das ist alles enthalten
6 Lektüren1 Aufgabe6 Unbewertete Labore
This module delves deeper into the NumPy library, focusing on its powerful features and functionalities. It covers universal functions (ufuncs) that allow for element-wise operations on ndarray, enabling efficient computation across large datasets. The module also explores various statistical methods available in NumPy, linear algebra operations for solving mathematical problems, random number generation for simulations and modeling, and masking techniques for filtering data. By the end of this module, learners will be equipped with the skills to leverage NumPy's capabilities for advanced numerical analysis.
Das ist alles enthalten
1 Lektüre1 Aufgabe5 Unbewertete Labore
This module introduces the Series data structure in Pandas, which is a one-dimensional labeled array capable of holding any data type. It begins by defining what a Series is and its significance in data analysis. The module covers various methods to create a Series, including using lists, dictionaries, and NumPy arrays. Learners will also explore how to access and manipulate elements within a Series, as well as perform mathematical operations on Series data. By the end of this module, students will understand how to utilize Series for effective data manipulation and analysis.
Das ist alles enthalten
2 Lektüren1 Aufgabe3 Unbewertete Labore
This module introduces the DataFrame data structure in Pandas, which is a two-dimensional labeled data structure that can hold heterogeneous data types. The module begins by defining what a DataFrame is and its significance in data analysis and manipulation. Learners will explore various methods to create DataFrames from sources such as dictionaries, lists, and external files (e.g., CSV). The module covers how to access data within a DataFrame using labels and indices, manipulate rows and columns, and perform operations such as merging and concatenating multiple DataFrames. By the end of this module, students will be proficient in utilizing DataFrames for data manipulation tasks.
Das ist alles enthalten
2 Lektüren1 Aufgabe7 Unbewertete Labore
This module provides an in-depth exploration of the Pandas library, which is essential for data manipulation and analysis in Python. It starts with an overview of what Pandas is and its significance in data science. The module highlights useful functionalities within Pandas, including data loading, cleaning, and preparation. Learners will examine how to generate descriptive statistics for both numerical and categorical columns, use the groupby() method for data aggregation, and handle missing and duplicate values effectively. By the end of this module, students will have a solid understanding of how to leverage Pandas for comprehensive data analysis.
Das ist alles enthalten
2 Lektüren1 Aufgabe6 Unbewertete Labore
Dozent

Empfohlen, wenn Sie sich für Data Analysis interessieren
Coursera Project Network
University of Colorado Boulder
University of Colorado Boulder
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.