Discover how to tackle complex challenges with Simulation for Digital Transformation. Learn to use Python and SimPy to model, analyze, and optimize systems, empowering you to make data-driven decisions and lead impactful digital transformation initiatives with Dartmouth Thayer School of Engineering faculty Vikrant Vaze and Reed Harder.



Simulation for Digital Transformation
Dieser Kurs ist Teil von Spezialisierung Data Analytics for Digital Transformation


Dozenten: Reed H. Harder
Bei enthalten
Empfohlene Erfahrung
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
April 2025
13 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage


Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

In diesem Kurs gibt es 7 Module
Das ist alles enthalten
2 Videos10 Lektüren1 Aufgabe3 Unbewertete Labore
Uncertainty is an inherent challenge in digital transformation, where organizations often face unpredictable changes in technology, customer behavior, and market dynamics. Whether deciding on resource allocation, optimizing processes, or assessing risks, handling uncertainty effectively is crucial to success. Probability theory provides a structured way to model this uncertainty, empowering managers to make data-driven decisions and embrace digital transformation with confidence. In this unit, we focus on the role of probability in quantifying and understanding uncertainty. By applying these mathematical principles, learners will develop the skills to predict outcomes, assess risks, and design more informed strategies. From anticipating market shifts to evaluating system performance, probability theory is a foundational tool in navigating the complexities of digital transformation.
Das ist alles enthalten
3 Videos5 Lektüren2 Aufgaben3 Unbewertete Labore
At this point in the course, you are able to use analytics to predict future outcomes based on historical data. Now, we will learn how to create a more sophisticated, expansive picture of possible outcomes through the use of simulation. By modeling complicated, interconnected processes, simulation techniques can bridge the gap between predictive and prescriptive analytics: not only can we generate outcomes of various actions, but we are also able to identify which action best solves the problem at hand. Specifically, we will explore discrete event simulation which allows us to incorporate many more variables—to ask many more “what if” questions such as: “What would happen if we made this price adjustment?” or “What would happen if we reduced the time spent on manufacturing that part?” By finding answers to such questions, we can generate more focused information to drive better decision-making and more effectively manage risk.
Das ist alles enthalten
2 Videos4 Lektüren2 Aufgaben2 Unbewertete Labore
By generating random variables from desired distributions, decision-makers can predict outcomes, optimize processes, and evaluate scenarios with precision. Whether it’s forecasting customer behavior or optimizing operational workflows, the ability to simulate random variables forms the foundation of effective predictive and prescriptive analytics. For example, e-commerce platforms use these techniques to simulate purchase behaviors based on historical customer data, while logistics companies rely on them to optimize delivery routes by accounting for variable factors such as traffic and weather. This unit, we will focus on two essential approaches: the inversion method and the rejection method, each with unique strengths suited for different types of distributions.
Das ist alles enthalten
2 Videos4 Lektüren2 Aufgaben3 Unbewertete Labore
Discrete event simulation is a critical tool in digital transformation, enabling organizations to analyze complex systems, manage uncertainty, and make data-driven decisions. This unit builds on foundational knowledge by applying discrete event simulation to real-world scenarios, allowing students to develop complete end-to-end models. These case studies illustrate how simulation can address operational challenges in various industries, from improving customer experience in retail to optimizing manufacturing processes. Students will use Python to implement simulations, applying techniques such as the inversion and rejection methods for generating random variables. By exploring steady-state and non-steady-state systems, students will learn to model customer behavior, optimize operational workflows, and evaluate system performance under uncertainty. These skills are essential for leveraging digital transformation technologies to inform managerial decisions.\
Das ist alles enthalten
2 Videos4 Lektüren2 Aufgaben2 Unbewertete Labore
Unit 6 brings together all the concepts and techniques learned throughout the course, providing students with the opportunity to develop and analyze complete simulations. The focus is twofold: building trustworthy simulations and exploring the role of simulation in prescriptive analytics. Trustworthy simulations are essential for ensuring that the insights derived from models are accurate, reliable, and actionable. In the context of prescriptive analytics, simulations extend beyond predicting outcomes to recommend actions that optimize decision-making, particularly in complex systems undergoing digital transformation. Note: (if you haven’t taken the Prescriptive Analytics course in this program) Prescriptive analytics uses data, models, and simulations to suggest the best course of action in scenarios with multiple possible outcomes. For example, it can help optimize resource allocation, improve supply chain efficiency, or design customer experiences by running simulations of different strategies and identifying the one that delivers the best results. In this unit, students will use simulation to answer "what-if" and "what-should" questions, equipping them to design solutions that balance trade-offs and achieve organizational goals.
Das ist alles enthalten
2 Videos2 Lektüren2 Aufgaben3 Unbewertete Labore
The final unit of this course is a practicum that serves as a mini-capstone project, allowing you to consolidate your learning and demonstrate mastery of the tools and techniques introduced throughout the course. This project is your opportunity to apply simulation, cloud-based tools, and data science methodologies to a practical business problem, providing actionable insights that align with digital transformation initiatives.
Das ist alles enthalten
2 Lektüren2 Aufgaben1 Unbewertetes Labor
Dozenten


Empfohlen, wenn Sie sich für Data Analysis interessieren
Dartmouth College
Dartmouth College
Dartmouth College
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,