Whizlabs
NVIDIA: Fundamentals of Machine Learning

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Whizlabs

NVIDIA: Fundamentals of Machine Learning

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 5 Stunden
3 Wochen bei 1 Stunde pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 5 Stunden
3 Wochen bei 1 Stunde pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Understand the fundamentals of AI, ML, and Deep Learning, and their key differences.

  • Implement supervised learning techniques like classification and regression.

  • Apply clustering methods and time series analysis using ARIMA.

  • Leverage NVIDIA RAPIDS for GPU-accelerated ML workflows.

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Februar 2025

Bewertungen

6 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 3 Module

Welcome to Week 1 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will explore ML Basics and Data Preprocessing, starting with an introduction to the course and best practices for exam success. We will define machine learning and set expectations for the Fundamentals of Machine Learning course. As we progress, we will differentiate between AI, Deep Learning, and Machine Learning and examine the types of machine learning. We will also cover the key steps involved in the machine-learning process. By the end of the week, we will dive into data preprocessing essentials, understanding its significance in machine learning workflows. A demo session on data preprocessing will provide hands-on insights into preparing data for model training.

Das ist alles enthalten

9 Videos2 Lektüren2 Aufgaben1 Diskussionsthema

Welcome to Week 2 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will explore the fundamentals of Supervised Machine Learning and Modal Evaluation, covering both Classification and Regression techniques. We will begin by understanding the principles of classification and regression models and their applications. As we progress, we will explore the process of model selection, training, and evaluation, followed by an in-depth discussion on evaluating classification models using the Confusion Matrix. Additionally, we will examine key evaluation metrics for both classification and regression models through theoretical explanations and hands-on demonstrations.

Das ist alles enthalten

8 Videos1 Lektüre2 Aufgaben

Welcome to Week 3 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will cover Unsupervised Learning, Advanced Techniques & GPU Acceleration, starting with unsupervised learning techniques like KMeans, hierarchical, and density-based clustering, along with a hands-on demo. We'll also explore association rule mining and NVIDIA RAPIDS for GPU-accelerated workflows, including a demo. Additionally, we'll learn about cross-validation techniques (GridSearch and Randomized Search) with a practical demo and conclude with the ARIMA model for time series analysis, along with a hands-on demo.

Das ist alles enthalten

11 Videos3 Lektüren2 Aufgaben

Dozent

Whizlabs Instructor
Whizlabs
69 Kurse53.603 Lernende

von

Whizlabs

Empfohlen, wenn Sie sich für Cloud Computing interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen