Welcome to the Practical Deep Learning with Python course, where you'll gain hands-on experience with cutting-edge deep learning techniques to model and analyze complex datasets. Unlock the power of deep learning to solve real-world problems and uncover actionable insights from massive data volumes. This course explores industry-specific applications and equips you with the practical skills needed to build and optimize advanced models.



Practical Deep Learning with Python
Dieser Kurs ist Teil von Spezialisierung Mastering AI: Neural Nets, Vision System, Speech Recognition

Dozent: Edureka
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Understand the core components of deep learning models and their role in AI.
Apply CNN, R-CNN, and Faster R-CNN for object detection tasks.
Implement RNNs and LSTMs for sequential data processing.
Optimize and evaluate deep learning models for improved performance.
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Februar 2025
13 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage


Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

In diesem Kurs gibt es 4 Module
In this module, you will explore the fundamental components of deep learning by designing perceptron and implementing their functionality. You will address the limitations of perceptron by utilizing Multi-Layer Perceptron (MLPs) and observe how MLPs significantly enhance model performance.
Das ist alles enthalten
25 Videos4 Lektüren4 Aufgaben2 Diskussionsthemen
In the second module of this course, learners will learn about the working of Convolutional Neural Networks (CNN) and understand their importance in training deep learning models. Learners will also work on improving CNN model performance using RCNN and Faster RCNN, observe the computation time of these models, and gauge their accuracy score.
Das ist alles enthalten
27 Videos3 Lektüren4 Aufgaben1 Diskussionsthema
This module focuses on Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks for sequential data processing. Learners will gain practical skills in building, training, and optimizing models for complex tasks.
Das ist alles enthalten
24 Videos4 Lektüren4 Aufgaben
This module is designed to assess an individual on the various concepts and teachings covered in this course. Evaluate your knowledge with a comprehensive graded quiz on SLP, MLP, RNN, CNN, LSTM and many more complex deep learning concepts.
Das ist alles enthalten
1 Video1 Lektüre1 Aufgabe1 Diskussionsthema
Empfohlen, wenn Sie sich für Machine Learning interessieren
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Deep learning is a subset of machine learning that emphasizes artificial neural network algorithms designed to mimic the structure and functions of the human brain. Multi-layered neural networks are developed to autonomously learn and identify features from vast datasets, enabling them to effectively perform tasks such as speech recognition, image recognition, and natural language processing. Deep learning plays a crucial role in AI advancements as it requires extensive amounts of data and computational strength.
The target audience for Practical Deep Learning with Python comprises beginners and intermediate learners eager to grasp and utilize deep learning methods with Python. This course is tailored for for data scientists, AI Research Analysts, and developers who possess fundamental programming skills and a basic grasp of machine learning principles.
To effectively follow the exercises and examples in Practical Deep Learning with Python, you will need a computer with the following minimum system requirements:
- Operating System: Windows, macOS, or Linux.
- Processor: A multi-core processor (preferably with support for AVX instructions).
- RAM: At least 8 GB of RAM, though 16 GB or more is recommended for larger datasets.
- Storage: At least 10 GB of free disk space to accommodate datasets, libraries, and project files.
- Python Environment: Python 3.6 or later installed with libraries such as TensorFlow or PyTorch, NumPy, Matplotlib, and Pandas.
Please note: All the practical are performed on Google Colab