Deep learning has revolutionized the field of natural language processing and led to many state-of-the-art results. This course introduces students to neural network models and training algorithms frequently used in natural language processing. At the end of this course, learners will be able to explain and implement feedforward networks, recurrent neural networks, and transformers. They will also have an understanding of transfer learning and the inner workings of large language models.



Expérience recommandée
Ce que vous apprendrez
Define feedforward networks, recurrent neural networks, attention, and transformers.
Implement and train feedforward networks, recurrent neural networks, attention, and transformers.
Describe the idea behind transfer learning and frequently used transfer learning algorithms.
Design and implement their own neural network architectures for natural language processing tasks.
Détails à connaître

Ajouter à votre profil LinkedIn
mars 2025
16 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées


Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Il y a 4 modules dans ce cours
This first week introduces the fundamental concepts of feedforward and recurrent neural networks (RNNs), focusing on their architectures, mathematical foundations, and applications in natural language processing (NLP). We'll will begin with an exploration of feedforward networks and their role in sentence embeddings and sentiment analysis. We then progresses to RNNs, covering sequence modeling techniques such as LSTMs, GRUs, and bidirectional RNNs, along with their implementation in Python. Finally, you will examine training techniques, gaining hands-on experience in optimizing neural language models.
Inclus
15 vidéos5 lectures4 devoirs1 devoir de programmation1 laboratoire non noté
This week we'll explore sequence-to-sequence models in natural language processing (NLP), beginning with recurrent neural network (RNN)-based architectures and the introduction of attention mechanisms for improved alignment in tasks like machine translation. The module also covers best practices for training neural networks, including regularization, optimization strategies, and efficient model training. At the end of the week, you will gain practical experience in implementing and training sequence-to-sequence models.
Inclus
10 vidéos1 lecture4 devoirs1 devoir de programmation
This week explores transfer learning techniques in NLP, focusing on pretraining, finetuning, and multilingual models. You will first examine the role of pretrained language models like GPT, GPT-2, and BERT, and their challenges. We then explore multitask training and data augmentation, highlighting strategies like parameter sharing and loss weighting to improve model generalization across tasks. Finally, you will dive into crosslingual transfer learning, exploring methods like translate-train vs. translate-test, as well as zero-shot, one-shot, and few-shot learning for multilingual NLP.
Inclus
17 vidéos4 devoirs1 devoir de programmation
This final week introduces large language models (LLMs) and how they can be effectively used through techniques like prompt engineering, in-context learning, and parameter-efficient finetuning. You will explore language-and-vision models, understanding how multimodal architectures extend beyond text to integrate visual and other data modalities. We will also examine non-functional properties of LLMs, including challenges such as hallucinations, fairness, resource efficiency, privacy, and interpretability.
Inclus
12 vidéos4 devoirs1 devoir de programmation
Instructeur

Offert par
Préparer un diplôme
Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par University of Colorado Boulder. Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.