University of Colorado Boulder
Deep Learning for Natural Language Processing

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
University of Colorado Boulder

Deep Learning for Natural Language Processing

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

20 heures pour terminer
3 semaines à 6 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Préparer un diplôme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

20 heures pour terminer
3 semaines à 6 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Préparer un diplôme

Ce que vous apprendrez

  • Define feedforward networks, recurrent neural networks, attention, and transformers.

  • Implement and train feedforward networks, recurrent neural networks, attention, and transformers.

  • Describe the idea behind transfer learning and frequently used transfer learning algorithms.

  • Design and implement their own neural network architectures for natural language processing tasks.

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

mars 2025

Évaluations

16 devoirs

Enseigné en Anglais
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 4 modules dans ce cours

This first week introduces the fundamental concepts of feedforward and recurrent neural networks (RNNs), focusing on their architectures, mathematical foundations, and applications in natural language processing (NLP). We'll will begin with an exploration of feedforward networks and their role in sentence embeddings and sentiment analysis. We then progresses to RNNs, covering sequence modeling techniques such as LSTMs, GRUs, and bidirectional RNNs, along with their implementation in Python. Finally, you will examine training techniques, gaining hands-on experience in optimizing neural language models.

Inclus

15 vidéos5 lectures4 devoirs1 devoir de programmation1 laboratoire non noté

This week we'll explore sequence-to-sequence models in natural language processing (NLP), beginning with recurrent neural network (RNN)-based architectures and the introduction of attention mechanisms for improved alignment in tasks like machine translation. The module also covers best practices for training neural networks, including regularization, optimization strategies, and efficient model training. At the end of the week, you will gain practical experience in implementing and training sequence-to-sequence models.

Inclus

10 vidéos1 lecture4 devoirs1 devoir de programmation

This week explores transfer learning techniques in NLP, focusing on pretraining, finetuning, and multilingual models. You will first examine the role of pretrained language models like GPT, GPT-2, and BERT, and their challenges. We then explore multitask training and data augmentation, highlighting strategies like parameter sharing and loss weighting to improve model generalization across tasks. Finally, you will dive into crosslingual transfer learning, exploring methods like translate-train vs. translate-test, as well as zero-shot, one-shot, and few-shot learning for multilingual NLP.

Inclus

17 vidéos4 devoirs1 devoir de programmation

This final week introduces large language models (LLMs) and how they can be effectively used through techniques like prompt engineering, in-context learning, and parameter-efficient finetuning. You will explore language-and-vision models, understanding how multimodal architectures extend beyond text to integrate visual and other data modalities. We will also examine non-functional properties of LLMs, including challenges such as hallucinations, fairness, resource efficiency, privacy, and interpretability.

Inclus

12 vidéos4 devoirs1 devoir de programmation

Instructeur

Katharina von der Wense
University of Colorado Boulder
1 Cours31 apprenants

Offert par

Préparer un diplôme

Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par University of Colorado Boulder. Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions