A rigorous introduction to the theory of Bayesian Statistical Inference and Data Analysis, including prior and posterior distributions, Bayesian estimation and testing, Bayesian computation theories and methods, and implementation of Bayesian computation methods using popular statistical software.
![Illinois Tech](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/http://coursera-university-assets.s3.amazonaws.com/3d/1c8fdf7ef5404aa83ab0c00fa12cf5/LOGO_1.png?auto=format%2Ccompress&dpr=1&w=28&h=28)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/1a4589dccee10648821b7ea23e5fca9a.png?auto=format%2Ccompress&dpr=1&q=80)
![Illinois Tech](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/http://coursera-university-assets.s3.amazonaws.com/66/99e007fc38456eab469171088e0d31/ILTECH_200x48.png?auto=format%2Ccompress&dpr=1&h=45)
Expérience recommandée
Détails à connaître
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/31ebcba3851b87d1d8609abf15d0ff7e.png?auto=format%2Ccompress&dpr=1&w=24&h=24)
Ajouter à votre profil LinkedIn
32 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
![Emplacement réservé](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/74c8747e8210831049cf88dd4eefe26c.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=320)
![Emplacement réservé](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/de1a6556fbe605411e8c1c2ca4ba45f1.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=259)
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
![Emplacement réservé](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/de1a6556fbe605411e8c1c2ca4ba45f1.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=333)
Il y a 9 modules dans ce cours
Welcome to MATH 574 Bayesian Computational Statistics! This module covers the ideas of Bayesian inference. It focuses on a framework for Bayesian inference and discusses the general approach to computation.
Inclus
11 vidéos5 lectures4 devoirs1 sujet de discussion1 laboratoire non noté
This module equips students with a solid foundation in Bayesian inference for single parameter models, emphasizing both theoretical understanding and practical application.
Inclus
17 vidéos4 lectures4 devoirs1 laboratoire non noté
This module provides an overview of Bayesian inference for multiparameter models, focusing on handling normal data, employing conjugate priors, and applying multivariate normal models to practical scenarios.
Inclus
13 vidéos5 lectures4 devoirs3 laboratoires non notés
This module provides an understanding of large-sample inference and frequency properties in Bayesian analysis, focusing on normal approximations, large-sample theory, and the evaluation of Bayesian methods from a frequentist perspective.
Inclus
14 vidéos4 lectures4 devoirs1 laboratoire non noté
This module provides an overview of hierarchical models within Bayesian inference, focusing on constructing priors, understanding exchangeability, performing analysis, and ensuring model validity and improvement.
Inclus
9 vidéos4 lectures4 devoirs1 laboratoire non noté
This module provides a comprehensive understanding of Bayesian computation techniques, emphasizing numerical integration, simulation methods, and advanced Markov chain algorithms. Students will gain practical skills in implementing these methods and debugging computational issues.
Inclus
12 vidéos4 lectures4 devoirs1 laboratoire non noté
This module consists of an overview of regression models in Bayesian inference, focusing on foundational principles, hierarchical linear models, and generalized linear models, with practical applications and advanced techniques.
Inclus
19 vidéos4 lectures4 devoirs1 laboratoire non noté
This module covers advanced topics in Bayesian inference, focusing on the setup, interpretation, and application of mixture models, as well as addressing computational challenges and integrating mixture models with multivariate data analysis.
Inclus
9 vidéos3 lectures3 devoirs1 laboratoire non noté
This module contains the summative course assessment that has been designed to evaluate your understanding of the course material and assess your ability to apply the knowledge you have acquired throughout the course.
Inclus
1 devoir
Instructeur
![Shahrzad Jamshidi](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera-instructor-photos.s3.amazonaws.com/51/293b2c200446d59498df72a324aea6/Sara-Zelenberg.jpg?auto=format%2Ccompress&dpr=1&w=75&h=75&fit=crop)
Offert par
Recommandé si vous êtes intéressé(e) par Probability and Statistics
Northeastern University
Illinois Tech
University of Amsterdam
IIMA - IIM Ahmedabad
Préparer un diplôme
Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par Illinois Tech. Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Felipe_Moitta.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Jennifer_John.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Larry_Tao_Wang_1.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Chaitanya_Anand.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![Emplacement réservé](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/7a1c0e2e779c1ff27cae62480adfe003.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=120)
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.