Uncertainty Quantification (UQ) is the science of mathematically quantifying and reducing uncertainty in systems of all types. Students will learn the nature and role of uncertainty in physical, mathematical, and engineering systems along with the basics of probability theory necessary to quantify uncertainty. The course provides an introduction to various sub-topics of UQ including uncertainty propagation, surrogate modeling, reliability analysis, random processes and random fields, and Bayesian inverse UQ methods.



Expérience recommandée
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2024
25 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées


Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Il y a 4 modules dans ce cours
This module sets the stage for uncertainty quantification by carefully defining the different types of uncertainties that may be present. Lesson one introduces aleatory and epistemic uncertainties. The second lesson helps to build your understanding of aleatory and epistemic uncertainties and tell the difference between the two. The third, and final module discusses from a board perspective how we mathematically treat aleatory and epistemic uncertainty.
Inclus
12 vidéos3 lectures3 devoirs2 sujets de discussion1 laboratoire non noté
This module provides an introduction to probability that will be necessary for conducting probabilistic uncertainty quantification. The first lesson introduces basic concepts in probability starting with preliminaries in Set Theory and building up the Axioms of Probability. The second lesson then introduces random variables and defines them through their probability density function and cumulative distribution function. Moments of random variables are also introduced. The third lesson introduces random vectors and random processes to begin extending toward higher dimensional problems. Again, random vectors and random processes are defined through their distribution functions and moments are defined.
Inclus
14 vidéos4 lectures11 devoirs1 sujet de discussion
In this module, we discuss the propagation of uncertainty through a general model. We begin in Lesson 1 with simple systems where uncertainty can be propagated analytically as a function of random variables. Lesson 2 then introduces the Taylor series expansion and demonstrates how we can make a Taylor series approximation for some systems, which allows us to analytically estimate the moments of a function of random variables. Lesson 3 presents the Monte Carlo method, which is the most robust and widely-used method for propagation of uncertainty and generally serves as a benchmark against which other methods are compared. Finally, we discuss the propagation of uncertainty through the construction of surrogate models in Lesson 4. In particular, we introduce Gaussian process and polynomial chaos expansions surrogates, which are the two most commonly used approaches for uncertainty quantification.
Inclus
15 vidéos5 lectures7 devoirs6 laboratoires non notés
This module provides a brief introduction into some of the more advanced topics in uncertainty quantification. Each of these topics could be covered in a course of their own, so we are only able to briefly introduce the most important concepts. The module begins by staying on the topic of uncertainty propagation and discussing advanced numerical methods - namely the spectral stochastic methods - in Lesson 1. Lesson 2 introduces reliability analysis, which is concerned with estimating small failure probabilities. Both approximate and Monte Carlo methods for reliability analysis are introduced. Lesson 3 introduces global sensitivity analysis, which aims to identify which random variables make the most significant contributions to uncertainty in the output of the model. Finally, Lesson 4 provides a brief introduction to Bayesian inference with a focus on Bayesian parameter estimation.
Inclus
14 vidéos3 lectures4 devoirs4 laboratoires non notés
Instructeur

Offert par
Recommandé si vous êtes intéressé(e) par Research Methods
Johns Hopkins University
American Psychological Association
Johns Hopkins University
Johns Hopkins University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.