Johns Hopkins University
Introduction to Uncertainty Quantification

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Johns Hopkins University

Introduction to Uncertainty Quantification

Michael Shields

Instructeur : Michael Shields

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

29 heures pour terminer
3 semaines à 9 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

29 heures pour terminer
3 semaines à 9 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

décembre 2024

Évaluations

25 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 4 modules dans ce cours

This module sets the stage for uncertainty quantification by carefully defining the different types of uncertainties that may be present. Lesson one introduces aleatory and epistemic uncertainties. The second lesson helps to build your understanding of aleatory and epistemic uncertainties and tell the difference between the two. The third, and final module discusses from a board perspective how we mathematically treat aleatory and epistemic uncertainty.

Inclus

12 vidéos3 lectures3 devoirs2 sujets de discussion1 laboratoire non noté

This module provides an introduction to probability that will be necessary for conducting probabilistic uncertainty quantification. The first lesson introduces basic concepts in probability starting with preliminaries in Set Theory and building up the Axioms of Probability. The second lesson then introduces random variables and defines them through their probability density function and cumulative distribution function. Moments of random variables are also introduced. The third lesson introduces random vectors and random processes to begin extending toward higher dimensional problems. Again, random vectors and random processes are defined through their distribution functions and moments are defined.

Inclus

14 vidéos4 lectures11 devoirs1 sujet de discussion

In this module, we discuss the propagation of uncertainty through a general model. We begin in Lesson 1 with simple systems where uncertainty can be propagated analytically as a function of random variables. Lesson 2 then introduces the Taylor series expansion and demonstrates how we can make a Taylor series approximation for some systems, which allows us to analytically estimate the moments of a function of random variables. Lesson 3 presents the Monte Carlo method, which is the most robust and widely-used method for propagation of uncertainty and generally serves as a benchmark against which other methods are compared. Finally, we discuss the propagation of uncertainty through the construction of surrogate models in Lesson 4. In particular, we introduce Gaussian process and polynomial chaos expansions surrogates, which are the two most commonly used approaches for uncertainty quantification.

Inclus

15 vidéos5 lectures7 devoirs6 laboratoires non notés

This module provides a brief introduction into some of the more advanced topics in uncertainty quantification. Each of these topics could be covered in a course of their own, so we are only able to briefly introduce the most important concepts. The module begins by staying on the topic of uncertainty propagation and discussing advanced numerical methods - namely the spectral stochastic methods - in Lesson 1. Lesson 2 introduces reliability analysis, which is concerned with estimating small failure probabilities. Both approximate and Monte Carlo methods for reliability analysis are introduced. Lesson 3 introduces global sensitivity analysis, which aims to identify which random variables make the most significant contributions to uncertainty in the output of the model. Finally, Lesson 4 provides a brief introduction to Bayesian inference with a focus on Bayesian parameter estimation.

Inclus

14 vidéos3 lectures4 devoirs4 laboratoires non notés

Instructeur

Michael Shields
Johns Hopkins University
2 Cours4 939 apprenants

Offert par

Recommandé si vous êtes intéressé(e) par Research Methods

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions