In this course, you will learn how to apply deep learning models to Natural Language Processing (NLP) tasks using Python. By the end of the course, you will be able to understand and implement cutting-edge deep learning models, including Feedforward Neural Networks, Convolutional Neural Networks, and Recurrent Neural Networks, tailored for NLP applications. You will also get hands-on experience with text classification, embeddings, and advanced models such as CBOW, GRU, and LSTM in TensorFlow.



Natural Language Processing - Deep Learning Models in Python

Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Implement deep learning models for NLP using Python and TensorFlow.
Understand and apply feedforward, convolutional, and recurrent neural networks for text data.
Build and train models for text classification, NER, and POS tagging.
Learn advanced techniques such as CBOW and LSTM for improving NLP tasks.
Détails à connaître

Ajouter à votre profil LinkedIn
avril 2025
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées


Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Il y a 6 modules dans ce cours
In this module, we will introduce you to the course and give a detailed outline of the journey ahead. We will also walk through the special offer exclusive to participants, ensuring you are set up for success in the course.
Inclus
2 vidéos1 lecture
In this module, we will show you how to find and download the necessary resources to get started. We'll also share useful tips to help you navigate through the course with confidence and make the most of your learning experience.
Inclus
2 vidéos1 devoir
In this module, we will explore the fundamentals of the neuron, focusing on its mathematical foundations and role in deep learning. Key topics include text classification, fitting lines to data, and understanding how models learn during training.
Inclus
7 vidéos1 devoir
In this module, we will dive into feedforward artificial neural networks, focusing on their architecture, mechanisms like forward propagation, and the crucial role of activation functions. We will also demonstrate how to apply these concepts to text classification tasks.
Inclus
15 vidéos1 devoir
In this module, we will cover the theory and practical applications of convolutional neural networks, emphasizing their use in NLP. From understanding convolution to implementing CNNs for text processing in TensorFlow, this module prepares you for more advanced tasks.
Inclus
9 vidéos1 devoir
In this module, we will dive into recurrent neural networks (RNNs), exploring how they process sequential data and their application in NLP tasks. We will also introduce advanced models like GRU and LSTM, guiding you through real-world implementations in TensorFlow.
Inclus
12 vidéos2 devoirs
Instructeur

Offert par
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Plus de questions
Aide financière disponible,