Northeastern University
Practical Engineering Data Mining: Techniques and Uses
Northeastern University

Practical Engineering Data Mining: Techniques and Uses

Kirankumar Trivedi

Instructor: Kirankumar Trivedi

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level
Some related experience required
11 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace
Build toward a degree
Gain insight into a topic and learn the fundamentals.
Intermediate level
Some related experience required
11 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace
Build toward a degree

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

January 2025

Assessments

5 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

In this module, participants will explore essential data concepts across domains, understanding diverse data types, attributes, and features. They will grasp the fundamental principles, methodologies, and scope of data mining, enabling them to effectively analyze data and extract valuable insights. Through this comprehensive approach, learners will gain proficiency in utilizing key data concepts, facilitating informed decision-making and innovation across various domains.

What's included

5 videos8 readings2 assignments2 discussion prompts

This module aims to impart a comprehensive understanding of data concepts, spanning various domains. Participants will learn to differentiate between different data types, attributes, and features. They will explore fundamental principles and methodologies of data mining, enabling them to extract meaningful insights from datasets. By mastering these objectives, learners will be equipped with the knowledge and skills necessary to analyze data effectively and make informed decisions in diverse professional settings.

What's included

3 videos13 readings1 assignment1 discussion prompt

Throughout this module, we will jump into the realm of dimensionality reduction, a technique for simplifying complex datasets to facilitate efficient analysis and visualization. By implementing dimensionality reduction methods such as Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE), we will gain insight into how to effectively reduce the number of features while preserving essential information. We'll learn to select and apply the most suitable dimensionality reduction techniques based on data types and analytical goals, thereby enhancing model performance and interpretability. This module shares the tools to navigate and extract meaningful insights from high-dimensional datasets, paving the way for more effective data analysis and decision-making.

What's included

4 videos9 readings1 assignment1 discussion prompt

In this module, we learn the concept of the Bias-Variance Trade-off in machine learning. Striving for models that generalize well requires navigating the delicate balance between bias and variance to avoid underfitting and overfitting. Bias represents the error from oversimplifying a complex problem, while variance quantifies the model's sensitivity to different training data subsets. We explore strategies to combat bias and variance in developing models that strike the right balance between accuracy and generalization. Transitioning to regression metrics, we look at practical tools used to measure and evaluate model performance in regression tasks, focusing on metrics like Root Mean Squared Error (RMSE). Finally, we navigate the landscape of assessing model performance in binary classification tasks, exploring advanced measures like the F1-Score, Matthews Correlation Coefficient (MCC), propensity scores, and the AUC-ROC curve.

What's included

5 videos10 readings1 assignment1 discussion prompt

Instructor

Kirankumar Trivedi
Northeastern University
1 Course11 learners

Offered by

Recommended if you're interested in Data Analysis

Build toward a degree

This course is part of the following degree program(s) offered by Northeastern University . If you are admitted and enroll, your completed coursework may count toward your degree learning and your progress can transfer with you.¹

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

New to Data Analysis? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions