University of Colorado Boulder
Deep Learning for Natural Language Processing
University of Colorado Boulder

Deep Learning for Natural Language Processing

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

20 hours to complete
3 weeks at 6 hours a week
Flexible schedule
Learn at your own pace
Build toward a degree
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

20 hours to complete
3 weeks at 6 hours a week
Flexible schedule
Learn at your own pace
Build toward a degree

What you'll learn

  • Define feedforward networks, recurrent neural networks, attention, and transformers.

  • Implement and train feedforward networks, recurrent neural networks, attention, and transformers.

  • Describe the idea behind transfer learning and frequently used transfer learning algorithms.

  • Design and implement their own neural network architectures for natural language processing tasks.

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

March 2025

Assessments

16 assignments

Taught in English
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

This first week introduces the fundamental concepts of feedforward and recurrent neural networks (RNNs), focusing on their architectures, mathematical foundations, and applications in natural language processing (NLP). We'll will begin with an exploration of feedforward networks and their role in sentence embeddings and sentiment analysis. We then progresses to RNNs, covering sequence modeling techniques such as LSTMs, GRUs, and bidirectional RNNs, along with their implementation in Python. Finally, you will examine training techniques, gaining hands-on experience in optimizing neural language models.

What's included

15 videos5 readings4 assignments1 programming assignment1 ungraded lab

This week we'll explore sequence-to-sequence models in natural language processing (NLP), beginning with recurrent neural network (RNN)-based architectures and the introduction of attention mechanisms for improved alignment in tasks like machine translation. The module also covers best practices for training neural networks, including regularization, optimization strategies, and efficient model training. At the end of the week, you will gain practical experience in implementing and training sequence-to-sequence models.

What's included

10 videos1 reading4 assignments1 programming assignment

This week explores transfer learning techniques in NLP, focusing on pretraining, finetuning, and multilingual models. You will first examine the role of pretrained language models like GPT, GPT-2, and BERT, and their challenges. We then explore multitask training and data augmentation, highlighting strategies like parameter sharing and loss weighting to improve model generalization across tasks. Finally, you will dive into crosslingual transfer learning, exploring methods like translate-train vs. translate-test, as well as zero-shot, one-shot, and few-shot learning for multilingual NLP.

What's included

17 videos4 assignments1 programming assignment

This final week introduces large language models (LLMs) and how they can be effectively used through techniques like prompt engineering, in-context learning, and parameter-efficient finetuning. You will explore language-and-vision models, understanding how multimodal architectures extend beyond text to integrate visual and other data modalities. We will also examine non-functional properties of LLMs, including challenges such as hallucinations, fairness, resource efficiency, privacy, and interpretability.

What's included

12 videos4 assignments1 programming assignment

Instructor

Katharina von der Wense
University of Colorado Boulder
1 Course31 learners

Offered by

Build toward a degree

This course is part of the following degree program(s) offered by University of Colorado Boulder. If you are admitted and enroll, your completed coursework may count toward your degree learning and your progress can transfer with you.¹

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

New to Algorithms? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions