This course provides an overview of some different concepts underpinning Generative AI, their mathematical principles, and their applications in engineering. The focus will be on the practical implementation of generative AI including, neural networks, attention mechanism, and advanced deep learning models.



Details to know

Add to your LinkedIn profile
April 2025
9 assignments
See how employees at top companies are mastering in-demand skills


Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review

There are 4 modules in this course
In this module, you will explore the foundations of neural networks, including perceptrons, architectures, and learning algorithms. You will dive deeply into optimization methods critical for efficient training, focusing on advanced techniques like Newton’s and quasi-Newton methods, momentum, RMSProp, and Adam optimization algorithms.
What's included
6 videos15 readings2 assignments2 discussion prompts
This module guides you through the mathematical approaches to regularization techniques that enhance neural network generalization and prevent overfitting. You will analyze concepts including Stein’s unbiased risk estimator, eigen decomposition, ensemble methods, dropout mechanisms, and advanced normalization techniques such as batch normalization.
What's included
4 videos17 readings2 assignments1 discussion prompt
In this module, you will examine convolutional neural networks (CNNs), including convolution operations, parameter sharing, kernel methods, and multi-dimensional data structures. You'll explore advanced CNN architectures, regularization, normalization techniques, and the implications of random kernels on network learning behavior.
What's included
5 videos31 readings2 assignments1 discussion prompt
In this module, you will analyze the maths underpinning generative models and maximum likelihood estimation (MLE). You will explore divergence metrics such as Kullback-Leibler divergence, Bayesian network structures, and autoregressive modeling methods, focusing on their theoretical foundations and practical implications.
What's included
6 videos33 readings3 assignments1 discussion prompt
Instructor

Offered by
Recommended if you're interested in Machine Learning
University of Colorado Boulder
Duke University
Google Cloud
Why people choose Coursera for their career




New to Machine Learning? Start here.

Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
More questions
Financial aid available,