This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.
![Google Cloud](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/http://coursera-university-assets.s3.amazonaws.com/74/fa9028074941789429dfc1d1b71ddf/gc-logo-360x360.png?auto=format%2Ccompress&dpr=1&w=28&h=28)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/1a4589dccee10648821b7ea23e5fca9a.png?auto=format%2Ccompress&dpr=1&q=80)
![Google Cloud](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/http://coursera-university-assets.s3.amazonaws.com/7f/db40d0f4a711e6bc06c3b39ee3e5b0/cloud_logo_400x96.png?auto=format%2Ccompress&dpr=1&h=45)
Build, Train and Deploy ML Models with Keras on Google Cloud
This course is part of multiple programs.
![Google Cloud Training](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera-instructor-photos.s3.amazonaws.com/c9/b2a070c36c11e68cc141fab179b5aa/Google-Cloud-logo-color-850.jpg?auto=format%2Ccompress&dpr=1&w=75&h=75&fit=crop)
Instructor: Google Cloud Training
Sponsored by Coursera Learning Team
49,860 already enrolled
(2,777 reviews)
What you'll learn
Design and build a TensorFlow input data pipeline.
Use the tf.data library to manipulate data in large datasets.
Use the Keras Sequential and Functional APIs for simple and advanced model creation.
Train, deploy, and productionalize ML models at scale with Vertex AI.
Skills you'll gain
Details to know
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/31ebcba3851b87d1d8609abf15d0ff7e.png?auto=format%2Ccompress&dpr=1&w=24&h=24)
Add to your LinkedIn profile
4 assignments
See how employees at top companies are mastering in-demand skills
![Placeholder](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/74c8747e8210831049cf88dd4eefe26c.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=320)
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
![Placeholder](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/a7c5400e51272c78b710ce9b56fd3178.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=562)
![Placeholder](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/de1a6556fbe605411e8c1c2ca4ba45f1.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=259)
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
![Placeholder](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/de1a6556fbe605411e8c1c2ca4ba45f1.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=333)
There are 6 modules in this course
This module provides an overview of the course and its objectives.
What's included
1 video
This module introduces the TensorFlow framework and previews its main components as well as the overall API hierarchy.
What's included
4 videos1 reading1 assignment
Data is the a crucial component of a machine learning model. Collecting the right data is not enough. You also need to make sure you put the right processes in place to clean, analyze and transform the data, as needed, so that the model can take the most signal of it as possible. In this module we discuss training on large datasets with tf.data, working with in-memory files, and how to get the data ready for training. Then we discuss embeddings, and end with an overview of scaling data with tf.keras preprocessing layers.
What's included
10 videos1 reading1 assignment2 app items
In this module, we discuss activation functions and how they are needed to allow deep neural networks to capture nonlinearities of the data. We then provide an overview of Deep Neural Networks using the Keras Sequential and Functional APIs. Next we describe model subclassing, which offers greater flexibility in model building. The module ends with a lesson on regularization.
What's included
10 videos1 reading1 assignment2 app items
In this module, we describe how to train TensorFlow models at scale using Vertex AI.
What's included
3 videos1 reading1 assignment1 app item
This module is a summary of the Build, Train, and Deploy ML Models with Keras on Google Cloud course.
What's included
4 readings
Instructor
![Google Cloud Training](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera-instructor-photos.s3.amazonaws.com/c9/b2a070c36c11e68cc141fab179b5aa/Google-Cloud-logo-color-850.jpg?auto=format%2Ccompress&dpr=1&w=75&h=75&fit=crop)
Offered by
Why people choose Coursera for their career
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Felipe_Moitta.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Jennifer_John.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Larry_Tao_Wang_1.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Chaitanya_Anand.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
Learner reviews
2,777 reviews
- 5 stars
61.90%
- 4 stars
24.91%
- 3 stars
8.89%
- 2 stars
2.62%
- 1 star
1.65%
Showing 3 of 2777
Reviewed on Oct 17, 2018
pretty good. some of the code in the last lab could be better explained. also please debug the cloud shell, as it does not always show the "web preview" button ;) otherwise, good job!
Reviewed on Oct 7, 2018
Great course as an introduction to TF, however, the labs are not as in depth as I'd have liked. Nonetheless, the course is well executed by the presenters.
Reviewed on May 18, 2020
I feel this course very valuable because it taught how to create an automated service in cloud with very huge data and working with distributed systems in production environment with minimal time.
Recommended if you're interested in Data Science
![Placeholder](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/7a1c0e2e779c1ff27cae62480adfe003.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=120)
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy