One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation.
![Johns Hopkins University](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/http://coursera-university-assets.s3.amazonaws.com/93/57fd6a96044c4bad3139afd3e87fd6/jhu-shield.png?auto=format%2Ccompress&dpr=1&w=28&h=28)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/1a4589dccee10648821b7ea23e5fca9a.png?auto=format%2Ccompress&dpr=1&q=80)
![Johns Hopkins University](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/http://coursera-university-assets.s3.amazonaws.com/38/8b04d939454911a61057268c51194b/JHU.logo_rgb.horizontal.blue.png?auto=format%2Ccompress&dpr=1&h=45)
Practical Machine Learning
This course is part of multiple programs.
![Jeff Leek, PhD](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera-instructor-photos.s3.amazonaws.com/2c/3ea105f46d1fe369e934014608ac4d/jeff-1.jpg?auto=format%2Ccompress&dpr=1&w=75&h=75&fit=crop)
![Roger D. Peng, PhD](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera-instructor-photos.s3.amazonaws.com/f5/783878eec27e95d2fade6b62d9a62a/Peng_Roger.jpg?auto=format%2Ccompress&dpr=1&w=75&h=75&fit=crop)
![Brian Caffo, PhD](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera-instructor-photos.s3.amazonaws.com/94/3fa57375db83096437cf7b4cff07c6/Brian-Caffo.jpeg?auto=format%2Ccompress&dpr=1&w=75&h=75&fit=crop)
Instructors: Jeff Leek, PhD
Sponsored by Coursera Learning Team
154,424 already enrolled
(3,248 reviews)
What you'll learn
Use the basic components of building and applying prediction functions
Understand concepts such as training and tests sets, overfitting, and error rates
Describe machine learning methods such as regression or classification trees
Explain the complete process of building prediction functions
Skills you'll gain
Details to know
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/31ebcba3851b87d1d8609abf15d0ff7e.png?auto=format%2Ccompress&dpr=1&w=24&h=24)
Add to your LinkedIn profile
5 assignments
See how employees at top companies are mastering in-demand skills
![Placeholder](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/74c8747e8210831049cf88dd4eefe26c.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=320)
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
![Placeholder](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/a7c5400e51272c78b710ce9b56fd3178.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=562)
![Placeholder](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/de1a6556fbe605411e8c1c2ca4ba45f1.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=259)
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
![Placeholder](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/de1a6556fbe605411e8c1c2ca4ba45f1.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=333)
There are 4 modules in this course
This week will cover prediction, relative importance of steps, errors, and cross validation.
What's included
9 videos4 readings1 assignment
This week will introduce the caret package, tools for creating features and preprocessing.
What's included
9 videos1 assignment
This week we introduce a number of machine learning algorithms you can use to complete your course project.
What's included
5 videos1 assignment
This week, we will cover regularized regression and combining predictors.
What's included
4 videos2 readings2 assignments1 peer review
Instructors
![Jeff Leek, PhD](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera-instructor-photos.s3.amazonaws.com/2c/3ea105f46d1fe369e934014608ac4d/jeff-1.jpg?auto=format%2Ccompress&dpr=1&w=75&h=75&fit=crop)
Offered by
Why people choose Coursera for their career
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Felipe_Moitta.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Jennifer_John.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Larry_Tao_Wang_1.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Chaitanya_Anand.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
Learner reviews
3,248 reviews
- 5 stars
66.37%
- 4 stars
22.35%
- 3 stars
6.95%
- 2 stars
2.52%
- 1 star
1.78%
Showing 3 of 3248
Reviewed on Jan 16, 2017
It was like opening up a door to a whole new world. I have discovered new tools that I will thoroughly enjoy to use for the exploration of data and for predictions. Thanks Team Coursera !
Reviewed on Jul 28, 2016
I learned a lot in this class. There are slight gaps from the depth of material covered in the lectures to the quizzes and assignment. If you're good at researching online, you'll be fine.
Reviewed on Jun 25, 2017
Awesome course. Would recommend it, but only to those who have a bit of stats and R background. This definitely helped me get a solid enough understanding of using R for machine learning.
Recommended if you're interested in Data Science
Duke University
Fractal Analytics
![Placeholder](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/7a1c0e2e779c1ff27cae62480adfe003.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=120)
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy