Northeastern University
Practical Engineering Data Mining: Techniques and Uses

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Northeastern University

Practical Engineering Data Mining: Techniques and Uses

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel
Einige einschlägige Kenntnisse erforderlich
Es dauert 11 Stunden
3 Wochen bei 3 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Auf einen Abschluss hinarbeiten
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel
Einige einschlägige Kenntnisse erforderlich
Es dauert 11 Stunden
3 Wochen bei 3 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Auf einen Abschluss hinarbeiten

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Januar 2025

Bewertungen

5 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 4 Module

In this module, participants will explore essential data concepts across domains, understanding diverse data types, attributes, and features. They will grasp the fundamental principles, methodologies, and scope of data mining, enabling them to effectively analyze data and extract valuable insights. Through this comprehensive approach, learners will gain proficiency in utilizing key data concepts, facilitating informed decision-making and innovation across various domains.

Das ist alles enthalten

5 Videos8 Lektüren2 Aufgaben2 Diskussionsthemen

This module aims to impart a comprehensive understanding of data concepts, spanning various domains. Participants will learn to differentiate between different data types, attributes, and features. They will explore fundamental principles and methodologies of data mining, enabling them to extract meaningful insights from datasets. By mastering these objectives, learners will be equipped with the knowledge and skills necessary to analyze data effectively and make informed decisions in diverse professional settings.

Das ist alles enthalten

3 Videos13 Lektüren1 Aufgabe1 Diskussionsthema

Throughout this module, we will jump into the realm of dimensionality reduction, a technique for simplifying complex datasets to facilitate efficient analysis and visualization. By implementing dimensionality reduction methods such as Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE), we will gain insight into how to effectively reduce the number of features while preserving essential information. We'll learn to select and apply the most suitable dimensionality reduction techniques based on data types and analytical goals, thereby enhancing model performance and interpretability. This module shares the tools to navigate and extract meaningful insights from high-dimensional datasets, paving the way for more effective data analysis and decision-making.

Das ist alles enthalten

4 Videos9 Lektüren1 Aufgabe1 Diskussionsthema

In this module, we learn the concept of the Bias-Variance Trade-off in machine learning. Striving for models that generalize well requires navigating the delicate balance between bias and variance to avoid underfitting and overfitting. Bias represents the error from oversimplifying a complex problem, while variance quantifies the model's sensitivity to different training data subsets. We explore strategies to combat bias and variance in developing models that strike the right balance between accuracy and generalization. Transitioning to regression metrics, we look at practical tools used to measure and evaluate model performance in regression tasks, focusing on metrics like Root Mean Squared Error (RMSE). Finally, we navigate the landscape of assessing model performance in binary classification tasks, exploring advanced measures like the F1-Score, Matthews Correlation Coefficient (MCC), propensity scores, and the AUC-ROC curve.

Das ist alles enthalten

5 Videos10 Lektüren1 Aufgabe1 Diskussionsthema

Dozent

Kirankumar Trivedi
Northeastern University
1 Kurs25 Lernende

von

Empfohlen, wenn Sie sich für Data Analysis interessieren

Auf einen Abschluss hinarbeiten

Dieses Kurs ist Teil des/der folgenden Studiengangs/Studiengänge, die von Northeastern University angeboten werden. Wenn Sie zugelassen werden und sich immatrikulieren, können Ihre abgeschlossenen Kurse auf Ihren Studienabschluss angerechnet werden und Ihre Fortschritte können mit Ihnen übertragen werden.¹

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen