The NVIDIA: Fundamentals of Deep Learning Course is the second course in the Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs Associate specialization. It introduces learners to core deep learning concepts and techniques, building on foundational machine learning principles.



NVIDIA: Fundamentals of Deep Learning
Ce cours fait partie de Spécialisation Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs

Instructeur : Whizlabs Instructor
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Understand deep learning fundamentals, including neuron data processing and model training.
Implement multi-class classification and CNNs for image recognition tasks.
Apply transfer learning with pre-trained models to improve deep learning performance.
Détails à connaître

Ajouter à votre profil LinkedIn
février 2025
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable


Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Il y a 2 modules dans ce cours
Welcome to Week 1 of the NVIDIA: Fundamentals of Deep Learning course. This week, we will cover the basics of Deep Learning. We will explore how data is processed in a neuron and learn about Gradient Descent. Next, we will demonstrate Training a Perceptron and dive into Forward Propagation and Backward Propagation in deep learning networks. Finally, we will look at Activation Functions with a practical demo. By the end of the week, you will have a strong understanding of these core concepts.
Inclus
9 vidéos2 lectures2 devoirs1 sujet de discussion
Welcome to Week 2 of NVIDIA: Fundamentals of Deep Learning course. This week, we will dive into Advanced Deep Learning Techniques, where we will learn about Multi-Class Classification using the MNIST Dataset and explore how deep learning models can be applied for classification tasks. We will cover training a multiclass classifier and methods to fit and evaluate the model's performance. Next, we will gain a deep understanding of Convolutional Neural Networks (CNNs), which are essential for image recognition tasks. We will also explore Transfer Learning Techniques, which allow us to leverage pre-trained models for new tasks. By the end of the week, we will implement Transfer Learning on an Image Dataset through a practical demo, reinforcing your understanding of these advanced techniques.
Inclus
5 vidéos3 lectures2 devoirs
Instructeur

Offert par
Recommandé si vous êtes intéressé(e) par Software Development
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.