"Introduction to Predictive Analytics and Advanced Predictive Analytics Using Python" is specially designed to enhance your skills in building, refining, and implementing predictive models using Python. This course serves as a comprehensive introduction to predictive analytics, beginning with the fundamentals of linear and logistic regression. These models are the cornerstone of predictive analytics, enabling you to forecast future events by learning from historical data. We cover a bit of the theory behind these models, but in particular, their application in real-world scenarios and the process of evaluating their performance to ensure accuracy and reliability. As the course progresses, we delve deeper into the realm of machine learning with a focus on decision trees and random forests. These techniques represent a more advanced aspect of supervised learning, offering powerful tools for both classification and regression tasks. Through practical examples and hands-on exercises, you'll learn how to build these models, understand their intricacies, and apply them to complex datasets to identify patterns and make predictions. Additionally, we introduce the concepts of unsupervised learning and clustering, broadening your analytics toolkit, and providing you with the skills to tackle data without predefined labels or categories. By the end of this course, you'll not only have a thorough understanding of various predictive analytics techniques, but also be capable of applying these techniques to solve real-world problems, setting the stage for continued growth and exploration in the field of data analytics.
![University of Pennsylvania](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/http://coursera-university-assets.s3.amazonaws.com/a2/66aaaad14d426fa9798ed714b3d0e5/UniversityofPennsylvania_Vertical_RGB_coursera-cert.png?auto=format%2Ccompress&dpr=1&w=28&h=28)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/1a4589dccee10648821b7ea23e5fca9a.png?auto=format%2Ccompress&dpr=1&q=80)
![University of Pennsylvania](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/http://coursera-university-assets.s3.amazonaws.com/0b/2bbb602d5c4c95b3889b602e9d1650/Wide-Penn-Logo.png?auto=format%2Ccompress&dpr=1&h=45)
Intro to Predictive Analytics Using Python
Ce cours fait partie de Spécialisation How to Use Data
![Brandon Krakowsky](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera-instructor-photos.s3.amazonaws.com/f2/4a1c841d544e82885c12b314567aa9/Brandon-Krakowsky.jpg?auto=format%2Ccompress&dpr=1&w=75&h=75&fit=crop)
Instructeur : Brandon Krakowsky
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Implement data preprocessing and model training procedures for regression.
Interpret feature importance in decision trees and random forests.
Explain the difference between supervised and unsupervised learning.
Détails à connaître
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/31ebcba3851b87d1d8609abf15d0ff7e.png?auto=format%2Ccompress&dpr=1&w=24&h=24)
Ajouter à votre profil LinkedIn
février 2025
7 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
![Emplacement réservé](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/74c8747e8210831049cf88dd4eefe26c.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=320)
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
![Emplacement réservé](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/a7c5400e51272c78b710ce9b56fd3178.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=562)
![Emplacement réservé](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/de1a6556fbe605411e8c1c2ca4ba45f1.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=259)
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
![Emplacement réservé](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/de1a6556fbe605411e8c1c2ca4ba45f1.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=333)
Il y a 3 modules dans ce cours
Module 1 introduces you to predictive analytics, covering essential models such as linear and logistic regression. This is where you start to learn how to forecast future trends from historical data.
Inclus
20 vidéos4 lectures2 devoirs2 éléments d'application
Module 2 expands your knowledge into decision trees and random forests, offering a deeper dive into more complex supervised learning models that enhance your predictive analytics capabilities.
Inclus
16 vidéos4 lectures2 devoirs2 éléments d'application
Module 3 explores unsupervised learning and clustering, guiding you through the nuances of model comparison and the art of identifying patterns without predefined labels.
Inclus
8 vidéos4 lectures3 devoirs1 élément d'application
Instructeur
![Brandon Krakowsky](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera-instructor-photos.s3.amazonaws.com/f2/4a1c841d544e82885c12b314567aa9/Brandon-Krakowsky.jpg?auto=format%2Ccompress&dpr=1&w=75&h=75&fit=crop)
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
University of Pennsylvania
University of Pennsylvania
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Felipe_Moitta.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Jennifer_John.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Larry_Tao_Wang_1.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/growth_testimonials/passionate_learner/Chaitanya_Anand.png?auto=format%2Ccompress&dpr=1&w=64&h=64&fit=crop)
![Emplacement réservé](https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://coursera_assets.s3.amazonaws.com/images/7a1c0e2e779c1ff27cae62480adfe003.png?auto=format%2Ccompress&dpr=2&blur=200&px=8&max-w=120)
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.