In this course, you'll dive deep into Exploratory Data Analysis (EDA) techniques and core machine learning algorithms. You'll learn how to analyze, visualize, and preprocess data, which are essential steps for building effective machine learning models. By the end of the course, you will have a solid understanding of key algorithms like linear regression, logistic regression, Naive Bayes, and decision trees, along with the skills to implement and optimize them.



Exploratory Data Analysis & Core ML Algorithms
Ce cours fait partie de Spécialisation Mastering Machine Learning Algorithms using Python

Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Apply exploratory data analysis techniques to preprocess and visualize data for machine learning.
Implement linear regression for predictive modeling and forecasting tasks.
Master logistic regression and optimize classification models using AUC-ROC.
Build decision trees and Naive Bayes classifiers, tuning models for better performance.
Détails à connaître

Ajouter à votre profil LinkedIn
avril 2025
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable


Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Il y a 5 modules dans ce cours
In this module, we will explore the importance of exploratory data analysis (EDA) in the data science process. You will learn various tools and processes to uncover patterns, detect anomalies, and summarize key features of your data. The module includes several hands-on projects, allowing you to apply EDA techniques to real-world datasets.
Inclus
9 vidéos2 lectures1 devoir
In this module, we will dive deep into linear regression, a core machine learning technique. You will gain a comprehensive understanding of its underlying concepts, including cost functions and gradient descent. Through hands-on projects, you'll build and optimize models using real-world data, focusing on both theoretical foundations and practical applications.
Inclus
13 vidéos1 devoir
In this module, we will introduce you to logistic regression, an essential algorithm for binary classification problems. You will explore how to prepare data, build models, and assess their performance. Additionally, you will learn how to optimize logistic regression models using techniques such as AUC-ROC and feature engineering.
Inclus
8 vidéos1 devoir
In this module, we will cover the Naive Bayes classification algorithm, focusing on its probabilistic nature and applications in classification tasks. Through real-world case studies, such as employee attrition prediction, you will learn how to build and optimize Naive Bayes models effectively.
Inclus
4 vidéos1 devoir
In this module, we will introduce decision tree classifiers, focusing on how they work and their advantages in classification tasks. You will explore key concepts such as the Gini Index, Entropy, and pruning. By the end of this module, you will be able to apply decision trees to real-world datasets and optimize them for improved model performance.
Inclus
6 vidéos1 lecture2 devoirs
Instructeur

Offert par
En savoir plus sur Data Analysis
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Plus de questions
Aide financière disponible,