This course offers an in-depth exploration of vector databases, focusing on their principles, applications, and future trends. By the end of the course, you'll gain a deep understanding of how vector databases function and how they differ from traditional databases. You'll also grasp the essential concepts that underpin modern data systems, like vectors, embeddings, and distance metrics, and how they enable enhanced search and data retrieval processes.



Expérience recommandée
Ce que vous apprendrez
Gain expertise in core vector database principles and the math behind vectors
Understand how embeddings and high-dimensional spaces work in real-world applications
Learn how indexing strategies and algorithms like KNN and ANN optimize vector search
Master tools like Pinecone, Qdrant, Milvus, and Weaviate for vector database management
Détails à connaître

Ajouter à votre profil LinkedIn
mai 2025
7 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées


Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Il y a 8 modules dans ce cours
In this module, we will introduce the course and its structure, providing an overview of what you can expect to learn. This section will set the stage for the upcoming detailed discussions on vector databases and their critical role in modern data systems.
Inclus
2 vidéos
In this module, we will explore the foundational principles of vector databases, examining why they have become an essential technology in data systems today. We’ll also compare vector databases with traditional databases, shedding light on their unique features and use cases.
Inclus
5 vidéos1 devoir
In this module, we will cover the core concepts behind vector databases, such as vectors, embeddings, and high-dimensional spaces. By looking at practical examples, you will gain insights into how vectors and embeddings improve data retrieval and management in vector databases.
Inclus
12 vidéos1 devoir
In this module, we will focus on the essential concepts of search similarity within vector databases. You’ll explore K-Nearest Neighbors (KNN) and Approximate Nearest Neighbors (ANN), understanding their role in improving search accuracy and efficiency in high-dimensional data spaces.
Inclus
4 vidéos1 devoir
In this module, we’ll dive into the different indexing strategies for vector databases, explaining how each technique works and its real-world applications. You’ll also learn how to select the most suitable index for your data-driven projects, ensuring optimized search performance.
Inclus
12 vidéos1 devoir
In this module, we will examine the key players in the vector database landscape, including Pinecone, Qdrant, Milvus, and Weaviate. You’ll gain hands-on experience with each platform, learning their strengths and specific use cases for vector-based applications.
Inclus
5 vidéos1 devoir
In this module, we will provide live demonstrations of popular vector databases—Pinecone and Weaviate. You’ll see firsthand how these platforms are used in real-world applications and how they manage vector data for efficient search and retrieval.
Inclus
2 vidéos1 devoir
In this module, we will look ahead to the future of vector databases, discussing how the technology is expected to evolve. You’ll gain insights into upcoming trends and innovations that will influence the development and adoption of vector databases in the coming years.
Inclus
1 vidéo1 devoir
Instructeur

Offert par
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Plus de questions
Aide financière disponible,