Chevron Left
Back to AI for Medical Diagnosis

Learner Reviews & Feedback for AI for Medical Diagnosis by DeepLearning.AI

4.7
stars
1,984 ratings

About the Course

AI is transforming the practice of medicine. It’s helping doctors diagnose patients more accurately, make predictions about patients’ future health, and recommend better treatments. As an AI practitioner, you have the opportunity to join in this transformation of modern medicine. If you're already familiar with some of the math and coding behind AI algorithms, and are eager to develop your skills further to tackle challenges in the healthcare industry, then this specialization is for you. No prior medical expertise is required! This program will give you practical experience in applying cutting-edge machine learning techniques to concrete problems in modern medicine: - In Course 1, you will create convolutional neural network image classification and segmentation models to make diagnoses of lung and brain disorders. - In Course 2, you will build risk models and survival estimators for heart disease using statistical methods and a random forest predictor to determine patient prognosis. - In Course 3, you will build a treatment effect predictor, apply model interpretation techniques and use natural language processing to extract information from radiology reports. These courses go beyond the foundations of deep learning to give you insight into the nuances of applying AI to medical use cases. As a learner, you will be set up for success in this program if you are already comfortable with some of the math and coding behind AI algorithms. You don't need to be an AI expert, but a working knowledge of deep neural networks, particularly convolutional networks, and proficiency in Python programming at an intermediate level will be essential. If you are relatively new to machine learning or neural networks, we recommend that you first take the Deep Learning Specialization, offered by deeplearning.ai and taught by Andrew Ng. The demand for AI practitioners with the skills and knowledge to tackle the biggest issues in modern medicine is growing exponentially. Join us in this specialization and begin your journey toward building the future of healthcare....

Top reviews

RK

Jul 3, 2020

It was a nice course. Though it covers basics. A follow-up advanced specilization can be made. Overall, it's sufficient for beginner for an engineer trying to learn application of AI for medical field

KH

May 27, 2020

Throughout this course, I was able to understand the different medical and deep learning terminology used. Definitely a good course to understand the basic of image classification and segmentation!

Filter by:

301 - 325 of 413 Reviews for AI for Medical Diagnosis

By ahmed g m

May 21, 2020

great course

By 鲁伟

May 13, 2020

great course

By wonseok k

Feb 24, 2021

fantastic!!

By Fereshteh H

Jun 5, 2023

Thank you

By KEERTHI G 1

Jul 18, 2020

Excellent

By YangBochen

Apr 18, 2021

Terrific

By Kamlesh C

Jun 15, 2020

Thankyou

By Justin H

Aug 26, 2023

brutal.

By Santiago G

Apr 24, 2020

Thanks!

By salisu A

Jun 20, 2021

Thanks

By Minh N B

May 14, 2021

T

H

a

n

k

s

By Jeff D

Nov 9, 2020

Thanks

By Abraham G T

Dec 6, 2021

great

By Ajay K

Apr 25, 2020

W

O

R

T

H

By Shishir T

Jul 27, 2022

good

By ROBERT A R V T C

Aug 28, 2020

nice

By Bikash k K

Jul 15, 2020

good

By DR. M E

May 20, 2020

Good

By Ana C S B

Jun 6, 2020

.

By Nirav S

May 25, 2020

Overall it is still a good course and worth doing but I won't expect to be able to clear a job interview in medical machine learning based on this course. It touches many nice topics such as what to do if data is unbalanced, different metrics about evaluating the models. However the part about MRI segmentation seems very rushed. I would consider this as a very basic course and the student would have to spend significant personal time exploring on his/her own to really understand the concepts presented in the class. It wasn't easy for me to get help on some programming assignments when I got stuck a. Moreover, when I didn't get a perfect score on the programming assignments, I don't know where I made the mistakes, which makes it impossible to correct them.

By Sameer V

Dec 31, 2020

The course has been designed well, learnt new terminology which I was not aware of previously when working on 2D datasets. Good introduction to 3D images. The course could be a bit more detailed, for example, since data preprocessing is very crucial, it would have been great to have had an assignment on cleaning 3D data using image registration, alignment, etc. Additional references for reading mainly books would have been nice. Finally, brief details on the type of computing power and memory is required especially for 3D images would have been very helpful. If I run the code on my laptop, I am sure it will crash, would be nice to have an idea of the requirements. Anyways, thank you for the course, very nice introduction to AI in medical field.

By Erwin J T C

May 8, 2020

As a Radiologist from the Philippines who has been desperately trying to find some kind of "grounded center" for all the AI/ML topics I've been studying online, this is a really great way to consolidate what I've learned so far especially for AI applied to Radiology. I've been training models for computer vision (based on free tutorials on-line) but this has definitely given me better insight as to how those models actually work and how they come together from simple numpy arrays, to tensors, layers, and finally into compiled models.... giving me a better appreciation for how activation functions and convolutions actually fit into the development of convolutional neural networks. More power to the team.

By Carlo F

Nov 23, 2020

The course was interesting but did not make me feel ready to apply a DL model on such data. It'a like being in a sandbox all the time: you play, you see things, then you are required to build your own, little, insignificant castle with your little basket, but no more than that. I think that real problems in AI application in this field are not about calculating sensitivity, specificicity or standardazing data, things for whom there are already functions built in libraries. I feel I know more this job, but i wouldn't be ready if i didn't know it yet before.

By Kate S

Nov 16, 2020

I really enjoyed and learned a lot from the material in this course. The lectures were clear and concise. Short lectures made it easy to retain the material. Also helpful were non-graded exercises embedded with the lectures. The graded labs were correct and had helpful hints.

The only improvement that I would want is to have the discussion forums back on Coursera and not on Slack. I found it difficult to search for similar questions on Slack and frequently ran into a limit on the number of messages I could search through.

Overall an excellent course!

By Hossein A

Sep 14, 2020

Overall, it is a good decision to take the course. Although it focuses on practical aspects of the AI in medicine, it falls short explaining the basic CNN architecture for image segmentation or classification. That said if you wish to fully take advantage of the course, spend some time understanding some of the key functions available in the util.py scripts which can be accessed through the notebooks. There, you could benefit from the course and learn interesting implementation stuff if you feel like the assignments are too practical.